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considered will be assumed throughout this paper. The case of
noisy, partially masked maps will be addressed in future studies.

In Section 2, we review the estimator of the (binned) angular
bispectrum and f NL and develop a parametrization of the bispectrum
to display and visualize it efficiently. In Section 3, we develop a
prescription to infer the bispectrum from the power spectrum for
clustered sources and for different populations. In Section 4, we use
publicly available full-sky simulations of radio and infrared sources
to compute and characterize their bispectrum at CMB frequencies
and we compare them to the predictions from the prescription. We
examine the configuration dependence of the point-source bispectra
and study the bias they induce on the estimation of the primordial
local NG in Section 5. We finally conclude and discuss our results
in Section 6.

2 THREE-POINT NG ESTIMATORS

2.1 Full-sky angular bispectrum estimator

Given a full-sky map of the temperature fluctuations �T (n) of some
signal, it can be decomposed in the spherical harmonic basis

a�m =
�

d2n Y ∗
�m(n) �T (n) (1)

with the usual orthonormal spherical harmonics Y�m,
�

d2n Y�m(n) Y ∗
��m� (n) = δ��� δmm� .

Observational data are pixelized, so that the integral is replaced
by a sum over pixels. We will assume that the solid angle of a
pixel, �pix, is a constant, which is for example the case for the
HEALPIX1 pixelization scheme that we will adopt for the numerical
calculations. In this case we have

a�m =
�

ni

Y ∗
�m(ni) �T (ni) �pix . (2)

This discreteness effect will be important e.g. in Section 3.1.
In order to compute the angular bispectrum, which is the har-

monic transform of the three-point correlation function, we will
resort to scale maps as defined by Spergel & Goldberg (1999) and
also used by Aghanim et al. (2003) and De Troia et al. (2003):

T�(n) =
�

m

a�mY�m(n) =
�

d2n� �T (n�) P�(n · n�), (3)

where P� is the Legendre polynomial of order �.
The optimal bispectrum estimator is then (Spergel & Goldberg

1999)

b̂�1�2�3 = 4π

(2�1 + 1)(2�2 + 1)(2�3 + 1)

�
�1 �2 �3

0 0 0

�−2

×
�

d2n T�1 (n) T�2 (n) T�3 (n) (4)

or it can be written in the form

b̂�1�2�3 =
�

4π

(2�1 + 1)(2�2 + 1)(2�3 + 1)

�
�1 �2 �3

0 0 0

�−1

×
�

m1,m2,m3

�
�1 �2 �3

m1 m2 m3

�
a�1m1 a�2m2 a�3m3 , (5)

1 http://healpix.jpl.nasa.gov

where the expression in brackets represents the Wigner 3j symbols.
Equation (5) is computationally expensive when implemented at
high � due to the large number of Wigner symbols to calculate.
Equation (4) still requires a few cpu-days for a full computation at a
Planck-like resolution, Nside = 1024–2048. Binning the multipoles
in �, as in Bucher, Tent & Carvalho (2010), has the advantage of
speeding up the computations and smoothing out the variations due
to cosmic variance.

For a given triangle in harmonic space (�1, �2, �3) the number of
independent configurations on the sphere is

N�1�2�3 = (2�1 + 1)(2�2 + 1)(2�3 + 1)

4π

�
�1 �2 �3

0 0 0

�2

. (6)

When multipoles are binned in bins of width �� the expression
for the scale maps (equation 3) becomes

T��(n) =
�

�∈��,m

a�m Y�m(n) (7)

and a binned bispectrum estimator identically weighting triangles
is given by

b̂��1,��2,��3 = 1

N�(��1,��2, ��3)

�
d2n T��1 (n) T��2 (n) T��3 (n),

(8)

where

N�(��1, ��2,��3) =
�

�i∈��i

N�1�2�3 .

One can easily check that the obtained binned bispectrum esti-
mator is unbiased for a constant bispectrum and that the bias can
be neglected as long as the bispectrum does not vary significantly
within a bin ��. In the following, we have chosen �max = 2048 and
a bin width �� = 64 for simplicity and computational speed while
retaining enough information on the scale dependence (Bucher et al.
2010).

2.2 f NL estimator

The most studied and constrained form of primordial NG is the local
ansatz, whose amplitude is parametrized by a non-linear coupling
constant f NL:

	(x) = 	G(x) + fNL

�
	2

G(x) − �	2
G(x)	

�
, (9)

where 	(x) is the Bardeen potential and 	G(x) is a Gaussian field.
This form of NG yields the following CMB angular bispectrum
(Komatsu & Spergel 2001):

bloc
�1�2�3

=
�

r2 dr α�1 (r) β�2 (r) β�3 (r) + permutation, (10)

with

α�(r) = 2

π

�
k2dk gT,�(k) j�(kr) (11)

β�(r) = 2

π

�
k2dk P (k) gT ,�(k) j�(kr), (12)

where gT,� is the radiation transfer function, which can be computed
with a Boltzmann code, j� are the spherical Bessel functions and
P (k) ∝ kns−4 is the primordial power spectrum, with a spectral
index ns.

On large angular scales, the SW effect is the dominant contribu-
tion to the CMB signal. In this regime, the CMB bispectrum takes
the following analytical form:
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